timescaledb_toolkit
Module:
Categories:
扩展总览
PIGSTY 第三方扩展: timescaledb_toolkit : 超表分析查询,时间序列流式处理,以及其他SQL工具
基本信息
- 扩展编号: 1010
- 扩展名称:
timescaledb_toolkit - 标准包名:
timescaledb_toolkit - 扩展类目:
TIME - 开源协议: Timescale
- 官方网站: https://github.com/timescale/timescaledb-toolkit
- 编程语言: Rust
- 其他标签:
pgrx - 备注信息:
元数据
- 默认版本: 1.21.0
- PG大版本:
17,16,15,14 - 动态加载: 无需动态加载
- 需要DDL: 需要执行
CREATE EXTENSIONDDL - 可重定位: 可以重定位安装至其他模式下
- 信任程度: 受信任,无需超级用户,带
CREATE权限的用户可以直接创建 - 所需模式: 无
- 所需扩展: 无
软件包
- RPM仓库:PIGSTY
- RPM包名:
timescaledb-toolkit_$v - RPM版本:
1.21.0 - RPM依赖:无
- DEB仓库:PIGSTY
- DEB包名:
postgresql-$v-timescaledb-toolkit - DEB版本:
1.21.0 - DEB依赖:无
最新版本
扩展安装
使用 pig 命令行工具安装 timescaledb_toolkit 扩展:
pig ext install timescaledb_toolkit
使用 Pigsty剧本 安装 timescaledb_toolkit 扩展:
./pgsql.yml -t pg_extension -e '{"pg_extensions": ["timescaledb_toolkit"]}' # -l <集群名>
从 YUM仓库 手工安装 timescaledb_toolkit RPM 包:
dnf install timescaledb-toolkit_17;
dnf install timescaledb-toolkit_16;
dnf install timescaledb-toolkit_15;
dnf install timescaledb-toolkit_14;
从 APT仓库 手工安装 timescaledb_toolkit DEB 包:
apt install postgresql-17-timescaledb-toolkit;
apt install postgresql-16-timescaledb-toolkit;
apt install postgresql-15-timescaledb-toolkit;
apt install postgresql-14-timescaledb-toolkit;
使用以下 SQL 命令在已经安装此扩展插件的 PG 集群上 启用 timescaledb_toolkit 扩展:
CREATE EXTENSION timescaledb_toolkit;
使用方法
This extension provide experimental features for timescaledb, check the docs for details.
Features
The following links lead to pages for the different features in the TimescaleDB Toolkit repository.
-
ASAP Smoothing experimental - A data smoothing algorithm designed to generate human readable graphs which maintain any erratic data behavior while smoothing away the cyclic noise.
-
Hyperloglog experimental – An approximate
COUNT DISTINCTbased on hashing that provides reasonable accuracy in constant space. (Methods) -
LTTB experimental – A downsample method that preserves visual similarity. (Methods)
-
Percentile Approximation - A simple percentile approximation interface [(Methods)], wraps and simplifies the lower level algorithms: